Магнетизм: история притягательности

Магнетизм изучается с давних времен, а за последние два столетия стал основой современной цивилизации.
Магнетизм: история притягательности

Человечество собирает знания о магнитных явлениях не меньше трех с половиной тысяч лет (первые наблюдения электрических сил имели место тысячелетием позже). Четыреста лет назад, на заре становления физики, магнитные свойства веществ были отделены от электрических, после чего долгое время те и другие изучались самостоятельно. Так была создана экспериментальная и теоретическая база, ставшая к середине XIX века основой единой теории электромагнитных явлений Вероятнее всего, необычные свойства природного минерала магнетита (магнитного железняка, Fe3O4) были известны в Месопотамии еще в бронзовом веке. А после возникновения железной металлургии нельзя было не заметить, что магнетит притягивает железные изделия. О причинах такого притяжения думал уже отец греческой философии Фалес из Милета (примерно 640−546 годы до н.э.), который объяснял его особой одушевленностью этого минерала (Фалес также знал, что натертый о шерсть янтарь притягивает сухие листья и мелкие щепочки, а потому наделял и его духовной силой). Позднее греческие мыслители рассуждали о невидимых парах, окутывающих магнетит и железо и влекущих их друг к другу. Неудивительно, что само слово «магнит» тоже имеет греческие корни. Скорее всего, оно восходит к названию Магнесии-у-Сипила, города в Малой Азии, вблизи которого залегал магнетит. Греческий поэт Никандр упоминал о пастухе Магнисе, оказавшемся рядом со скалой, которая тянула к себе железный наконечник его посоха, но это, по всей вероятности, просто красивая легенда.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Природными магнитами интересовались и в Древнем Китае. Способность магнетита притягивать железо упоминается в трактате «Весенние и осенние записи мастера Лю», датируемом 240 годом до н.э. Столетие спустя китайцы заметили, что магнетит не действует ни на медь, ни на керамику. В VII—VIII вв.еках они выяснили, что свободно подвешенная намагниченная железная игла поворачивается к Полярной звезде. В результате во второй половине XI века в Китае появились настоящие морские компасы, европейские мореплаватели освоили их сотней лет позже. Примерно тогда же китайцы обнаружили, что намагниченная игла смотрит восточнее направления на север и открыли тем самым магнитное склонение, намного опередив в этом вопросе европейских мореплавателей, которые пришли к этому выводу только в XV столетии.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Маленькие магнитики

Зарождение науки об магнетизме

Первое в Европе описание свойств природных магнитов сделал француз Пьер де Марикур. В 1269 году он служил в армии короля Сицилии Карла Анжуйского, осадившей итальянский город Лусеру. Оттуда он и отправил приятелю в Пикардию документ, который вошел в историю науки как «Письмо о магните» (Epistola de Magnete), где рассказал о своих опытах с магнитным железняком. Марикур заметил, что в каждом куске магнетита имеются две области, особенно сильно притягивающие железо. Он усмотрел параллель между этими зонами и полюсами небесной сферы и позаимствовал их названия для областей максимума магнитной силы — поэтому мы теперь и говорим о северном и южном магнитных полюсах. Если разбить кусок магнетита надвое, пишет Марикур, в каждом осколке появляются собственные полюса. Марикур не только подтвердил, что между кусками магнетита возникает как притяжение, так и отталкивание (это уже было известно), но впервые связал этот эффект с взаимодействием между разноименными (северным и южным) либо одноименными полюсами.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Многие историки науки считают Марикура бесспорным пионером европейской экспериментальной науки. Во всяком случае, его заметки о магнетизме ходили в десятках списков, а после появления книгопечатания издавались отдельной брошюрой. Их с уважением цитировали многие натуралисты вплоть до XVII столетия. Этот труд был хорошо известен и английскому естествоиспытателю и врачу (лейб-медику королевы Елизаветы и ее преемника Якова I) Уильяму Гильберту, который в 1600 году опубликовал (как положено, на латыни) замечательный труд «О магните, магнитных телах и большом магните — Земле». В этой книге Гильберт не только привел практически все известные сведения о свойствах природных магнитов и намагниченного железа, но и описал собственные опыты с шаром из магнетита, с помощью которых он воспроизвел основные черты земного магнетизма. Например, он обнаружил, что на обоих магнитных полюсах такой «маленькой Земли» (по латыни terrella) компасная стрелка устанавливается перпендикулярно ее поверхности, на экваторе — параллельно, а на средних широтах — в промежуточном положении. Так Гильберт смоделировал магнитное наклонение, о существовании которого в Европе знали более полувека (в 1544 году это явление впервые описал нюрнбергский механик Георг Хартман).

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Гильберт воспроизвел на своей модели и геомагнитное склонение, которое приписал не идеально гладкой поверхности шара (и потому в планетарном масштабе объяснял этот эффект притяжением континентов). Он обнаружил, что сильно нагретое железо теряет магнитные свойства, но при охлаждении они восстанавливаются. И наконец, Гильберт первым провел четкое различие между притяжением магнита и притяжением натертого янтаря, которое он назвал электрической силой (от латинского названия янтаря electrum). В общем, это был чрезвычайно новаторский труд, по достоинству оцененный и современниками, и потомками. Утверждение Гильберта, что Землю следует считать «большим магнитом», стало вторым по счету фундаментальным научным выводом о физических свойствах нашей планеты (первый — открытие ее шарообразности, сделанное еще в Античности).

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Два века перерыва

После Гильберта наука о магнетизме вплоть до начала XIX века продвинулась очень мало. Сделанное за это время можно буквально перечесть по пальцам. В 1640 году ученик Галилея Бенедетто Кастелли объяснил притяжение магнетита наличием в его составе множества мельчайших магнитных частиц — первая и очень несовершенная догадка, что природу магнетизма следует искать на атомном уровне. Голландец Себальд Бругманс в 1778 году заметил, что висмут и сурьма отталкиваются от полюсов магнитной стрелки — это был первый пример физического явления, которое 67 годами позже Фарадей назвал диамагнетизмом. В 1785 году Шарль-Огюстен Кулон посредством прецизионных измерений на крутильных весах показал, что сила взаимодействия магнитных полюсов обратно пропорциональна квадрату расстояния между ними — точно так же, как и сила взаимодействия между электрическими зарядами (в 1750 году к аналогичному выводу пришел англичанин Джон Мичелл, но кулоновское заключение много надежней).

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

А вот изучение электричества в те годы двигалось семимильными шагами. Объяснить это нетрудно. Единственными первичными источниками магнитной силы оставались природные магниты — других наука не знала. Их сила стабильна, ее нельзя ни изменить (разве что уничтожить нагревом), ни тем более генерировать по собственному желанию. Понятно, что это обстоятельство сильно ограничивало возможности экспериментаторов.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ


Электричество было в гораздо более выгодном положении — ведь его можно было получать и накапливать. Первый генератор статических зарядов построил в 1663 году бургомистр Магдебурга Отто фон Герике (знаменитые магдебургские полушария — тоже его детище). Век спустя такие генераторы стали столь широко распространены, что их демонстрировали даже на великосветских приемах. В 1744 году немец Эвальд Георг фон Клейст и немногим позже голландец Питер ван Мушенбрук изобрели лейденскую банку — первый электрический конденсатор; тогда же появились и первые электрометры. В результате к концу XVIII века наука знала об электричестве куда больше, чем в его начале. А вот о магнетизме этого сказать было нельзя.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

А потом все изменилось. В 1800 году Алессандро Вольта изобрел первый химический источник электрического тока — гальваническую батарею, также известную как вольтов столб. После этого открытие связи между электричеством и магнетизмом стало вопросом времени. Оно могло состояться уже на следующий год, когда французский химик Николя Готеро заметил, что два параллельных провода с током притягиваются друг к другу. Однако ни он, ни великий Лаплас, ни замечательный физик-экспериментатор Жан-Батист Био, которые позже наблюдали это явление, не придали ему никакого значения. Поэтому приоритет справедливо достался ученому, давно предположившему существование такой связи и много лет посвятившему ее поискам.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

От Копенгагена до Парижа

Все читали сказки и истории Ганса Христиана Андерсена, но мало кто знает, что когда будущий автор «Голого короля» и «Дюймовочки» четырнадцатилетним подростком добрался до Копенгагена, он обрел друга и покровителя в лице своего двойного тезки, ординарного профессора физики и химии Копенгагенского университета Ганса Христиана Эрстеда. И оба прославили свою страну на весь мир.

widget-interest

Многообразие магнитных полей Ампер изучил взаимодействие между параллельными проводниками с током. Его идеи развил Фарадей, который предложил концепцию магнитных силовых линий.

Эрстед с 1813 года вполне сознательно пытался установить связь между электричеством и магнетизмом (он был приверженцем великого философа Иммануила Канта, полагавшего, что все природные силы обладают внутренним единством). В качестве индикаторов Эрстед использовал компасы, но долгое время безрезультатно. Эрстед ожидал, что магнитная сила тока параллельна ему самому, и для получения максимального крутящего момента располагал электрический провод перпендикулярно стрелке компаса. Естественно, что стрелка не реагировала на включение тока. И только весной 1820 года во время лекции Эрстед протянул провод параллельно стрелке (либо чтобы посмотреть, что из этого получится, либо у него появилась новая гипотеза — об этом историки физики спорят до сих пор). И вот тут-то стрелка и качнулась — не слишком сильно (у Эрстеда была маломощная батарея), но все-таки заметно.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Правда, великое открытие тогда еще не состоялось. Эрстед почему-то прервал эксперименты на три месяца и вернулся к ним лишь в июле. И вот тут-то он понял, что «магнитное воздействие электрического тока направлено по окружностям, охватывающим этот ток». Это был парадоксальный вывод, ведь ранее вращающиеся силы не появлялись ни в механике, ни в какой-либо другой ветви физики. Эрстед изложил свои выводы в статье и 21 июля отправил ее в несколько научных журналов. Потом он больше электромагнетизмом не занимался, и эстафета перешла к другим ученым. Первыми ее приняли парижане. 4 сентября известный физик и математик Доминик Араго рассказал об открытии Эрстеда на заседании Академии наук. Его коллега Андре-Мари Ампер решил заняться магнитным действием токов и буквально на следующий день приступил к экспериментам. Первым делом он повторил и подтвердил опыты Эрстеда, а в начале октября обнаружил, что параллельные проводники притягиваются, если токи текут через них в одном и том же направлении, и отталкиваются — если в противоположных. Ампер изучил взаимодействие и между непараллельными проводниками и представил его формулой (закон Ампера). Он показал также, что свернутые в спираль проводники с током поворачиваются в магнитном поле, подобно стрелке компаса (и между делом изобрел соленоид — магнитную катушку). Наконец, он выдвинул смелую гипотезу: внутри намагниченных материалов текут незатухающие микроскопические параллельные круговые токи, которые и служат причиной их магнитного действия. Тогда же Био и Феликс Савар совместными усилиями выявили математическую зависимость, позволяющую определять интенсивность магнитного поля, создаваемого постоянным током (закон Био-Савара).

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Чтобы подчеркнуть новизну изученных эффектов, Ампер предложил термин «электродинамические явления» и постоянно пользовался им в своих публикациях. Но это еще не было электродинамикой в современном смысле. Эрстед, Ампер и их коллеги работали с постоянными токами, создававшими статичные магнитные силы. Физикам только предстояло обнаружить и объяснить действительно динамичные нестационарные электромагнитные процессы. Эта задача была решена в 1830—1870-х. К ней приложили руку около дюжины исследователей из Европы (в том числе и России- вспомним правило Ленца) и США. Однако главная заслуга бесспорно принадлежит двум титанам британской науки — Фарадею и Максвеллу.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Лондонский тандем

Для Майкла Фарадея 1821 год стал воистину судьбоносным. Он получил заветную должность суперинтенданта лондонского Королевского института и фактически случайно начал исследовательскую программу, благодаря которой занял уникальное место в истории мировой науки.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Произошло это так. Редактор журнала «Анналы философии» Ричард Филипс предложил Фарадею написать критический обзор новых работ, посвященных магнитному действию тока. Фарадей не только последовал этому совету и опубликовал «Исторический эскиз электромагнетизма», но приступил к собственным исследованиям, которые растянулись на долгие годы. Сначала он, как и Ампер, повторил эксперимент Эрстеда, после чего двинулся дальше. К концу 1821 года он изготовил устройство, где токонесущий проводник вращался вокруг полосового магнита, а другой магнит поворачивался вокруг второго проводника. Фарадей предположил, что и магнит, и провод под током окружены концентрическими силовыми линиями, lines of force, которыми и обусловлено их механическое воздействие. Это уже был зародыш концепции магнитного поля, хотя сам Фарадей таким термином не пользовался.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Поначалу он почитал силовые линии удобным методом описания наблюдений, но со временем уверился в их физической реальности (тем более что нашел способ наблюдать их с помощью рассыпанных между магнитами железных опилок). К концу 1830-х он четко осознал, что энергия, источником которой служат постоянные магниты и проводники под током, распределена в пространстве, заполненном силовыми линиями. Фактически Фарадей уже мыслил в теоретико-полевых терминах, в чем значительно опередил своих современников.

Но главное его открытие состояло в другом. В августе 1831 года Фарадей смог заставить магнетизм генерировать электрический ток. Его прибор состоял из железного кольца с двумя противоположными обмотками. Одну из спиралей можно было замкнуть на электрическую батарею, другая соединялась с проводником, расположенным над магнитным компасом. Стрелка не меняла положения, если по первой катушке шел постоянный ток, но качалась во время его включения и выключения. Фарадей понял, что в это время во второй обмотке возникали электрические импульсы, обусловленные возникновением или исчезновением магнитных силовых линий. Иначе говоря, он открыл, что причиной электродвижущей силы служат изменения магнитного поля. Этот эффект обнаружил также американский физик Джозеф Генри, но он опубликовал свои результаты позднее, чем Фарадей, и не сделал столь серьезных теоретических выводов.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ


К концу жизни Фарадей пришел к заключению, что новые знания об электромагнетизме нуждаются в математическом оформлении. Он решил, что эта задача придется по плечу Джеймсу Клерку Максвеллу, молодому профессору Маришал-колледжа в шотландском городе Абердине, о чем ему и написал в ноябре 1857 года. И Максвелл действительно объединил все тогдашние знания об электромагнетизме в единую математизированную теорию. Эта работа была в основном выполнена в первой половине 1860-х годов, когда он стал профессором натуральной философии лондонского Кингз-колледжа. Понятие электромагнитного поля впервые появилось в 1864 году в мемуаре, представленном Лондонскому Королевскому обществу. Максвелл ввел этот термин для обозначения «той части пространства, которая содержит и окружает тела, пребывающие в электрическом или магнитном состоянии», причем специально подчеркнул, что это пространство может быть как пустым, так и заполненным любым видом материи.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Главным итогом трудов Максвелла стала система уравнений, связывающих между собой электромагнитные явления. В опубликованном в 1873 году «Трактате об электричестве и магнетизме» он назвал их общими уравнениями электромагнитного поля, а сегодня они зовутся уравнениями Максвелла. Позднее их не раз обобщали (например, для описания электромагнитных явлений в различных средах), а также переписывали с использованием все более совершенного математического формализма. Максвелл показал также, что эти уравнения допускают решения, включающие незатухающие поперечные волны, частным случаем которых является видимый свет.

Теория Максвелла представила магнетизм как особого рода взаимодействие между электрическими токами. Квантовая физика XX века добавила к этой картине всего два новых момента. Теперь мы знаем, что электромагнитные взаимодействия переносятся фотонами и что электроны и многие другие элементарные частицы обладают собственными магнитными моментами. На этом фундаменте построены все экспериментальные и теоретические работы в области магнетизма.