Человек гомеоморфен... спиннеру: как это объяснить

Для топологии нет разницы между шаром или мячом, блином или цилиндром.  Это  один из самых  высоких  уровней  математической абстракции,  который рассматривает свойства поверхности как таковой, без привязки к ее размерам или конкретной форме. Так, шар можно увеличить или уменьшить, раскатать в цилиндр, а цилиндр – расплющить в блинчик. Но вот чтобы сделать бублик, придется либо склеивать цилиндр, либо прорвать отверстие в блинчике.

С точки зрения топологии именно дырки – одно из ключевых свойств поверхности. Если выложить на поверхности шара или цилиндра петлю из нитки, ее можно стянуть без узелка, и такое пространство называется односвязным. С бубликом такое не получится: помешает отверстие. Нельзя превратить фигуры разной линейной связности одну в другую без разрывов или склеек. Топологические фигуры, для которых такое возможно, связываются гомеоморфными – как при игре с куском пластилина – преобразованиями. Чашка и бублик гомеоморфны, бублик и цилиндр – нет. Но чему гомеоморфен человек?

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Традиционная китайская медицина учит, что у человека имеется семь отверстий: вход и выход желудочно-кишечного тракта, уши, ноздри и выходы наружных половых органов. Современная анатомия считает иначе – например, наружные половые органы у мужчин заканчиваются яичками, поэтому с точки зрения топологии отверстия они не образуют. Это тупик, «впадина», которую гомеоморфными преобразованиями можно устранить без всяких склеек и разрывов. Просветы женских половых органов завершаются фаллопиевыми трубами, которые открываются в полость тела. Она также не сообщается с внешней средой, делая это «отверстие» всего лишь «впадиной».

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Это касается и ушей, отверстия которых закрываются герметичной (в норме) барабанной перепонкой. Но вот с оставшимися отверстиями дело обстоит сложнее: помимо «входа» и «выхода» желудочно-кишечного тракта, к нему в области носоглотки подходят просветы, начинающиеся ноздрями. У нас остается четыре соединенных друг с другом отверстия – непростой случай. Редакции «ПМ» пришлось привлечь математика-тополога, чтобы выяснить: человек гомеоморфен спиннеру. Говоря точнее, тройному тору.

Андрей Коняев, кандидат физико-математических наук, доцент кафедры дифференциальной геометрии и приложений мехмата МГУ
widget-interest

«В топологии не всегда легко сказать, к какой простейшей фигуре можно свести поверхность: к сфере, тору и т. п. Общего правила на этот счет нет, все зависит от конкретной поверхности и от того, как она задана. Если мы описываем ее формулой (как сферу: x2 + y2 + z2 = 1), то эта задача обычно бывает очень сложна. Если же поверхность задается атласом, то есть набором отдельных составляющих ее фигур (картами) и правилами их склейки, то найти исходную фигуру можно достаточно быстро».