Как читать мысли: устройство из Российского квантового центра

Прибор миелофон из произведений Кира Булычева был основан на чрезвычайно редких кристаллах и позволял читать мысли окружающих. Возможно, фантаст был недалек от истины: с помощью сверхчувствительных датчиков магнитного поля, разрабатываемых в Российском квантовом центре, можно будет регистрировать очень слабые биотоки – в перспективе, и в мозгу.
Как читать мысли: устройство из Российского квантового центра

После того как врач произносит «Давайте снимем кардиограмму!», вы уже направляетесь к кушетке и собираетесь снимать ботинки и рубашку, чтобы медсестра смогла закрепить на груди и конечностях десяток электродов. Но все оказывается совсем не так: вы подходите к соседнему столу, рядом с которым на держателе закреплена небольшая коробочка. Проходит несколько секунд — и все, кардиограмма снята. Никаких кушеток, никаких проводов, никаких электродов.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Да и сама эта кардиограмма тоже непроста: с ее помощью врач может более чем за сутки обнаружить признаки скорого инфаркта, может увидеть признаки бессимптомно протекающей ишемической болезни сердца. По своей информативности такая коробочка может дать результат, сопоставимый с возможностями самого дорогого и сложного диагностического комплекса — позитрон-эмиссионного томографа. Это картина из совсем близкого будущего: уже сейчас в лабораториях Российского квантового центра ученые работают над действующими прототипами магнитных сенсоров, которые в будущем смогут слушать не только сердце, но, возможно, и мозг.

Как работает сенсор на основе ферримагнетика

Основной элемент сенсора — пленка из ферримагнетика. Для создания сенсоров используют феррит-гранат с ионами редкоземельных металлов, например иттрия, лютеция или тулия. Монокристаллическую пленку феррит-граната выращивают с помощью метода эпитаксии на специальной подложке из галлий-гадолиниевого граната. Кристаллическая подложка отличается тем, что почти не имеет дефектов, это «самый правильный» кристалл, известный сегодня. В результате выращенная пленка лишена неоднородностей. Чтобы сделать сенсор, нужно создать на поверхности пленки специальный рельеф — это непростая задача, поскольку пленка отличается исключительной твердостью. Полученный квадрат пленки размером в десяток миллиметров помещают внутрь управляющих катушек, которые создают вращающееся с частотой в сотни килогерц внешнее магнитное поле. Оно заставляет намагниченность этой пленки тоже описывать круг. В результате магнитные моменты миллиардов атомов начинают вращаться в унисон. Если сенсор оказывается даже в очень слабом внешнем магнитном поле, то в этом вращении возникает асимметрия, появляются гармоники, которые регистрируются самими управляющими катушками. Еще большей чувствительностью обладает метод регистрации с помощью лазерного луча: колебания намагниченности меняют интенсивность отраженного лазерного излучения.

От токов к полям

Изобретение электрокардиографии (ЭКГ) в конце XIX — начале XX века впервые позволило медикам в прямом эфире наблюдать за работой сердца. Электрические токи, проходящие по сердцу по мере его сокращений, отражались на фотопленке (а потом на бумаге) в виде чередований пиков — их форма могла указывать на ишемическую болезнь сердца, на другие типы поражений. Однако у ЭКГ при всем ее удобстве были и остаются существенные недостатки. Например, с ее помощью мы можем регистрировать не все токи, а только те, которые текут в сторону электродов, снимающих показания. Кроме того, ЭКГ фиксирует не сами токи напрямую, а разницу потенциалов на коже, которые связаны с токами сердца лишь опосредованно. В результате у ЭКГ возникают «слепые зоны», участки сердечной мышцы, состояние которых не видно или видно недостаточно хорошо в общепринятой электрокардиографии. Из-за этого медики не могли, например, обнаруживать некоторые типы «бессимптомной» ишемической болезни сердца и некоторые другие патологии.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

В 1963 году двое американских ученых — Герхард Боул и Ричард Макфи — попытались впервые обойти эту проблему и уловить не разность потенциалов на коже, а магнитные поля, которые порождаются непосредственно токами в сердечной мышце. Они использовали магнитные катушки с металлическими сердечниками, но результаты оказались более чем скромными: индукция магнитного поля, которое генерируют биотоки, составляет лишь 10−14−10−10 Тл (для сравнения: величина магнитного поля Земли около 5•10−5 Тл). Поэтому на первой стадии ученые фиксировали в основном шумы. Ситуация улучшилась, когда магнитокардиограмму попытались снять в специальной комнате, изолированной от внешних магнитных полей, но в клинический метод МКГ превратилась только с появлением СКВИДов (SQUID, Superconducting Quantum Interference Device), сверхпроводящих магнитных датчиков, которые фиксировали сверхслабые магнитные поля (до 1014 Тл) благодаря квантовому эффекту Джозефсона.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

История клинической практики магнитокардиографии не была простой — многие врачи ранее заявляли, что этот метод не дает существенного улучшения диагностики по сравнению с ЭКГ. Однако последние данные, в особенности японских медиков, где магнитная диагностика распространена шире, указывают, что МКГ дает существенные преимущества.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

СКВИДы позволили создать первые медицинские кардиографы, пригодные для широкого использования в клинической практике. Однако даже современные приборы такого типа крайне дороги (они стоят около $1−1,5 млн), для их работы требуется, чтобы датчики, джозефсоновские контакты, находились в сверхпроводящем состоянии. А это означает, что магнитокардиографы требуют сложной и дорогой крио­ген­ной системы, работающей с жидким гелием. Эти устройства сопоставимы по сложности и дороговизне с компьютерным томографом, и при всех своих преимуществах они вчистую проигрывают обычной электрокардиографии, поскольку та значительно дешевле и проще.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Дешево и чувствительно

Группа ученых из Российского квантового центра (РКЦ) нашла способ решить эту проблему: они создали высокочувствительные магнитные сенсоры, способные работать при комнатной температуре, компактные и в сотни раз более дешевые, чем техника на базе СКВИДов. «Мы используем квантовый эффект — обменное взаимодействие в тонких пленках из ферримагнетиков, состоящих из железа и редкоземельных металлов», — говорит доктор физико-математических наук Владимир Белотелов, руководитель группы «Магнитооптика, плазмоника и нанофотоника» РКЦ, доцент кафедры фотоники и физики микроволн физического факультета МГУ им. М.В. Ломоносова. Ферримагнетики — «промежуточный» материал между ферромагнетиками и антиферромагнетиками. Если в ферромагнитном материале магнитные моменты атомов за счет квантового обменного взаимодействия выстраиваются в одном направлении (так получаются постоянные магниты), а в антиферромагнетиках магнитные моменты соседних атомов направлены в противоположные стороны и компенсируют друг друга, то в ферримагнетиках они компенсируются лишь частично.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Сенсоры, которые создает группа Владимира Белотелова, сделаны из монокристаллической пленки феррит-граната R3Fe5O12 (R обозначает редкоземельный элемент). Чтобы детектировать внешнее магнитное поле, магнитные моменты атомов в этой пленке раскручивают управляющими катушками до частоты в сотни килогерц. В результате в пленке возникают миллиарды согласованно вращающихся и прецессирующих «волчков» — атомов. «Если сенсоры оказываются во внешнем магнитном поле, даже очень слабом, то оно порождает асимметрию в этой прецессии. Возникающая асимметрия и регистрируется — либо самими катушками, в которых появляются так называемые кратные гармоники, либо с помощью лазера», — объясняет Владимир Белотелов. Второй метод точнее, но и сложнее: прецессия намагниченности меняет поляризацию отраженного от пленки лазерного луча. Этот метод обеспечивает вполне достаточную чувствительность для магнитокардиографии — 10−11−10−13 Тл. Сейчас ученые работают над проектом, поддержанным Российским научным фондом (РНФ), который так и называется «Сверхчувствительные сенсоры магнитного поля для магнитокардиографии».

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Сенсор такого типа уже создан, но на пути к серийному производству предстоит еще много сделать: нужно, например, заставить сенсоры не «слышать» магнитное поле Земли, поля электрических и электронных приборов — весь тот магнитный шум, который нас постоянно окружает. Для этого датчики будут работать в группе. Поле сердца гораздо сильнее зависит от точки в пространстве (оно более неоднородно), чем магнитный шум. Поэтому картина с группы сенсоров позволяет после математической обработки «вычесть» помехи. Но сперва нужно откалибровать датчики, научить их работать хотя бы в «тепличных условиях».

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Тепличные условия в данном случае — это гигантский металлический контейнер с дверью 10-сантиметровой толщины. Это расположенная в полуподвале здания Российского квантового центра безмагнитная камера, внутри которой три человека и экспериментальное оборудование изолированы от магнитного поля Земли. По словам Владимира Белотелова, магнитоизолирующая камера ослабляет внешнее поле примерно в тысячу раз. Ученые уже пытаются снять магнитную кардиограмму у крыс: крысу, предварительно усыпив, укладывают на доску, в которой находится датчик. Начинается эксперимент: ученые параллельно снимают «обычную» и магнитную кардиограмму. «Это только первый шаг, нам еще нужно научиться отсекать помехи и шумы, очищать полезный сигнал, но мы рассчитываем, что уже через пару лет у нас будет готовый к производству прибор», — говорит Владимир Белотелов.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ
Работа для ферримагнетика
Работа для ферримагнетика
РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Сердце и мозг

Однако ученые не планируют останавливаться на достигнутом. Группа Белотелова уже работает над еще более чувствительными сенсорами — с использованием плазмонов. Если на монокристаллическую магнитную пленку нанести тонкий слой металла с прорезями, то при взаимодействии с лазерным излучением на границе двух сред возникают плазмон-поляритоны — квазичастицы, представляющие собой устойчивые коллективные колебания электронного газа, взаимодействующего с фотонами электромагнитного поля. «Поляритоны очень чувствительны к изменению магнитного поля», — говорит Белотелов. По его словам, использование этой технологии позволит решить значительно более сложную задачу, нежели создание магнитокардиографа, — магнитоэнцефалографию (МЭГ), то есть считывание колебаний магнитного поля, порождаемого очень слабыми токами в мозгу.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Сейчас для регистрации этих слабых токов используется электроэнцефалография (ЭЭГ), но она имеет те же недостатки, что и ЭКГ: по электрическим потенциалам на коже головы нужно восстановить, какие токи протекают в глубине мозга. Можно, конечно, вживить электроды прямо в мозг — такой метод иногда используется в научных экспериментах (например, для управления протезами), но этот способ вряд ли подходит для рутинных обследований. Умение более точно регистрировать электрические токи в мозге открывает массу возможностей — от создания действительно удобных интерфейсов «мозг-компьютер» и «чтения мыслей» до массы медицинских применений. Плазмонные датчики могут обеспечить необходимое для этого микронное пространственное разрешение, но за это надо будет платить снижением чувствительности. «Чтобы шагнуть в сторону магнитоэнцефалографии, нам нужно поднять чувствительность датчиков на три порядка величины. Это задача, над которой мы сейчас думаем», — говорит Владимир Белотелов.