Умные самолеты: человеко-машинный интерфейс для гражданской авиации

Аспирант кафедры 703 «Системное проектирование авиакомплексов» института №7 «Робототехнические и интеллектуальные системы» МАИ Сергей Дяченко работает над созданием комплекса автоматизации тестирования графической информации и звуковых предупреждений в рамках верификации систем индикации и сигнализации гражданских самолётов.
Умные самолеты: человеко-машинный интерфейс для гражданской авиации

Помимо основных функций, данное средство может быть использовано для тестирования любых технических объектов, имеющих в составе системы человеко-машинного взаимодействия: самолёты военного и военно-транспортного назначения, вертолёты, космические корабли, автомобили, морские суда и другие.

Рождение идеи

В основе работы лежит идея о применении популярных и широко используемых технологий из IT-сферы – методов распознавания изображений и звука. Идея проекта появилась из производственных нужд. Сергей является специалистом отдела систем индикации и сигнализации в филиале ПАО «Корпорация "Иркут" "Центр комплексирования", где занимаются разработкой авионики для отечественного гражданского самолёта МС-21. В ходе разработки очередной версии программного обеспечения указанных систем возникла необходимость протестировать выдачу текстовых сообщений, формируемых системой предупреждения экипажа и выводимых на индикаторах в кабине, на различных фазах полёта самолёта. Учитывая большое количество сообщений (более 600), по оценкам специалистов отдела, ручное тестирование заняло бы для команды тестировщиков из двух человек около месяца.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Кроме того, контур тестирования не ограничивался только этой задачей, а поставленные сроки для выполнения испытаний были сжатыми. Тогда коллектив задумался о разработке средства, которое позволило бы автоматизировать данный процесс.

Вместе с Сергеем в качестве программистов и тестировщиков над проектом работают выпускники и студенты кафедры 703 МАИ: Дмитрий Ильяшенко, Егор Мамкин, Артём Крыцин, Владислав Зуб и Иван Кордонский. В роли научного руководителя проекта выступает заведующий кафедрой Евгений Неретин.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Процесс реализации

По задумке проекта, тестировщик должен задавать значения параметров для формирования текстовых сообщений, после чего они появляются на дисплее в кабине экипажа. Далее установленная напротив дисплея камера фиксирует их появление, делает снимок экрана и передаёт его на вход ПО распознавания текстовой информации. В результате распознавания формируется файл с перечнем распознанных сообщений, который в дальнейшем сравнивается с ожидаемыми результатами. По итогам сравнения делается вывод о прохождении теста.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

«Мы провели анализ и выяснили, что достаточно оперативно данную задачу можно решить с помощью нейросетевых технологий. Взяли нейросеть Tesseract OCR от Google, нацеленную именно на задачу распознавания текста, обучили её на те шрифты, которые используются в кабине экипажа МС-21, и протестировали на статических картинках с текстовыми сообщениями. Результат был весьма хорош – точность распознавания текста составила около 97%. Далее мы испытали нашу систему в боевых условиях ­на стенде, и здесь наша система также подтвердила свою работоспособность. В результате нам удалось сократить время для решения задачи до одной недели, а количество тестировщиков – до одного человека. После успешной реализации распознавания текста мы задумались об автоматизации тестирования произвольной графической информации и звуковых сообщений. Так цели нашего проекта расширились», – рассказал Сергей.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Отсутствие конкурентов

Большинство бортовых систем не подразумевают человеко-машинного взаимодействия в ходе эксплуатации самолёта. То есть системы выполнены в виде блоков, которым поступает информация на вход, на основе неё они рассчитывают необходимые данные и выдают результаты на выход. На текущий момент тестирование таких систем практически полностью автоматизировано: существует множество решений, позволяющих задавать и считывать параметры, передаваемые по кодовым линиям связи.

Однако не всё так просто с системами человеко-машинного взаимодействия, которые формируют органолептическую информацию для восприятия со стороны пользователя (например, изображение, звук, тактильные сигналы). В силу сложности реализации комплексов для автоматизации тестирования данной информации на рынке подобные решения практически отсутствуют. При этом ручное тестирование изображений и звука занимает больше времени, а также может являться причиной ошибок, вызванных человеческим фактором.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Завершающий этап

Со слов разработчика, основной функционал комплекса успешно реализован и внедрён в деятельность филиала ПАО «Корпорация "Иркут" "Центр комплексирования". Однако работы по его усовершенствованию и расширению функционала будут продолжены. Например, сейчас ведутся работы по увеличению точности распознавания произвольной графической информации.

В дальнейшем Сергей и его команда планируют доработать проект для реализации всех запланированных функций в надлежащем качестве и инициировать процесс квалификации программного средства. Это важный этап для возможности выхода на рынок и массового применения комплекса в промышленности.

«Принципы, лежащие в основе проекта, универсальны, поэтому разработанный комплекс может применяться для тестирования любых технических систем человеко-машинного взаимодействия, – объяснил Сергей. – Адаптация под различные объекты зависит от конкретных проектных решений по выдаче визуальной и звуковой информации, а также от необходимости учёта требований соответствующей нормативной документации».